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Abstract: In this work, the geodesics of a test particle in a static and stationary charged anti-de Sitter black hole
in a f(R) = R − 2α

√
R− 8Λ gravity is investigated. Inside the outer event horizon of the static and stationary

charged anti-de-sitter black hole, there exists a stable and periodic circular orbit that is not coming out of the black
hole but not falling into its singularity in the background of f(R) gravity.

Keywords: Test particle; Black hole; Circular orbit; f(R) gravity

PACS: 04.20.-q, 04.25.dg, 04.70.-s

1 Introduction
One of the most convenient ways to investigate the geometrical structure around a black hole in the background
of anti-de-Sitter spacetime, and to address certain issues such as dark energy, cosmological inflation is to study
the geodesic equation of motion of very small and light particles (as compared to the black hole’s size and mass)
in and around the black hole. Subramanyan Chandrasekhar [1] was among the first to analyse two types of test
particle orbits: orbits of the first kind and orbits of the second kind. Bound orbits of the third kind inside the outer
horizon of the black hole were found by [2] for charged particles around the rotating charged black holes. Eva
Hackman et al. [3] examined for neutral particles around rotating black holes.

Recently, a new type of charged spherically symmetric black hole solutions in the context of the f(R) =
R − 2α

√
R− 8Λ gravitational scenario was discovered by Nashed and Capozziello [4] to address certain issues

such as dark energy, cosmological inflation, or other unexplained gravitational phenomena. The geodesics and
geodesic deviation for a stable circular orbit around the black hole has been discussed to understand the dynamics
of spacetime in strong gravitational fields, to test theories of gravity, and to predict observable astrophysical
phenomena. The presence of the term α

√
R− 8Λ modifies the gravitational dynamics at large scales. The term 8Λ

represents a cosmological constant, linked to the energy density of the vacuum or dark energy. The modification
by α, a constant, allows for a different curvature dependence than in standard general relativity, which explains
cosmological observations such as the accelerated expansion of the universe. An asymptotically anti-de Sitter
spacetime contains black-hole horizons only with a negative cosmological constant,Λ < 0 where the gravitational
effects differ significantly from those of asymptotically flat black holes. These black holes are often studied in
the context of theoretical physics, particularly in the study of holography and the AdS/CFT correspondence. The
anti-de Sitter black hole is interesting because it provides a rich framework for understanding quantum gravity,
especially through the AdS/CFT correspondence, which links gravity in an AdS space to a conformal field theory
on its boundary[5]. This duality offers insights into strongly coupled quantum systems and has applications
in areas like condensed matter physics, string theory, and high-energy physics, helping to bridge gaps between
gravity and quantum field theory.

We examine geodesics of a test-charged massive particle in a stationary and static charged anti-de Sitter black
hole and just outside its singularity in the f(R) gravity where the tidal forces and radiation of gravitational waves
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of the black hole are assumed to be too weak to affect on the falling test particle when acted upon. We assume
the generic properties of the black hole metric intact inside from the disturbance of the perturbative instabilities
([6],[7]).

This work is organized as follows: In the second section, we revisit the black hole solutions in the static
and stationary charged anti-de Sitter black hole in a f(R) = R − 2α

√
R− 8Λ gravity. In the third section, the

geodesic equation of motion of a test particle after the discussion of the black hole solution is obtained. In the
fourth section, we discuss about the event horizons. In the fourth section, we examine the geodesic motion of the
test particle. Finally, we present our conclusions of the work.

2 Black hole solutions
The model of gravity used to provide the black hole solutions is obtained by varying the action,

S = Sg + SEM , (1)

where SEM is the electromagnetic field action and

Sg =
1

2κ

∫ √
−g(f(R)− Λ) . (2)

Sg is the gravitational action with the cosmological constant Λ, the Ricci scalar R, the determinant of the metric
g and the gravitational constant κ. In this study, SEM represents the action of the nonlinear electrodynamics field,
which takes the form

SEM = −1

2
F 2s, (3)

where s ≥ 1 is an arbitrary parameter that is equal to 1 for the standard Maxwell theory and F 2 = FµνF
µν ,

where Fµν = 2Aµ,ν with Aµ being the gauge potential 1-form, and the comma denotes the ordinary partial
differentiation. The resulting Maxwell f(R) field equations after the variation of the action with the metric gµν
are

Rµνf
′(R)− 1

2
gµµf(R)− 2gµνΛ + gµνf

′(R)−∇µ∇νf
′(R) = 8πTµν , (4)

∂ν(
√
gFµν) = 0 , (5)

where Rµν is the Ricci tensor, Fµν is the electromagnetic field strength tensor, f ′(R) = df
dR and stress-energy

tensor Tµν is given below,

Tµν =
1

4π
[gαβF

α
µ F

β
ν − 1

4
gµνF

αβFαβ ] . (6)

The particular model considered to obtain the solutions is given by the function

f(R) = R− 2α
√
R− 8Λ , (7)

where α is a non-zero dimensional parameter that causes solutions to differ from the typical general relativity
solutions. The value of α lies in between 0 < α < 0.5 to ensure the theoretical model stable and physically
meaningful. Otherwise, the model leads to instabilities in the solutions.

3 Geodesic equations of motion
Geodesic equations for test particles of charge q and mass m in the Kerr-Newman metric were derived in [8].
Applying the Hamilton-Jacobi formalism, an orbital trajectory of a test-charged massive particle in a static and
stationary charged anti-de Sitter black hole with a non-zero cosmological constant (Λ < 0) is described by the
total energy of the particle E, the azimuthal component of the angular momentum L as observed by a station-
ary observer at infinity, and the Carter constant Q related with the total angular momentum of the particle in the
f(R) = R− 2α

√
R− 8Λ gravity. The solution to the Maxwell field equation in the static and stationary charged
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anti-de Sitter black hole space-time with a non-zero cosmological constant (Λ < 0) in the Boyer-Lindquist coor-
dinates (t, r, θ, ϕ) is given by the line element[4], (see also in [9]),

ds2 = −g(r)dt2 + g(r)−1dr2 + r2(dθ2 + sin2 θdϕ2), (8)

where

g(r) =
12αr4 + 3αr2y2 − 2ry2 + 2y2

6r2y2α
, (9)

with the scale parameter, y2 = −3/Λ. The line element reduces to Reissner-Nordstrom black hole solution if
Λ → 0, and α ̸= 0 and the mass and charge of the black hole are realized respectively as M = 1

6α and qh = 1√
6α

.
The non-vanishing temporal component of the gauge potential is given by

At =
1√
3αr

. (10)

The set of equations of motion of a test massive charged particle in the anti-de-Sitter spacetime is obtained as [10]:

dr

dλ
= ±

√
V (r), (11)

dθ

dλ
= ±

√
V (θ)

r2
, (12)

dϕ

dλ
=

L

r2 sin2 θ
, (13)

dt

dλ
=

(
E − q√

3αr

)
g−1(r) , (14)

where mλ = τ is the proper time and

V (r) =
(
E − q√

3αr

)2

− g(r)
(
m2 +

Q+ L2

r2

)
, (15)

V (θ) =
(
Q+ L2 − L2 sin−2 θ

)
. (16)

Here, V (r) and V (θ) represent the resulting potentials that describe the motion of the test particle in the r− and
θ− directions, respectively. The orbit of the particle at some distance r will completely confine to the equatorial
plane if Q = 0 at θ = π

2 . The test particle executes a spherical orbit, which is a non-equatorial orbit at some
radius in the θ-direction. The total angular momentum of the particle is given by

√
Q+ L2. The typical natures

of the potential V (r) versus the radial distance are shown in figure 1 for the various values of angular momentum,
L = 2, 3, 4, taken at the values of the test charge, q = 0.30, α = 0.11, y = 2× 102,m = 0.2, Q = 6.

4 Horizons
The metric has an intrinsic singularity from the horizon definition. The event horizons are given by the roots of
g(r) = 0 i.e.

12αr4 + 3αr2y2 − 2ry2 + 2y2 = 0,

(r − r+)(r − r−)(r − rc)(r − r∗c ) = 0,

where

r± =
−M±

√
Y+

A
, rc =

M±
√
Y−

A
= r∗c , (17)

A = 2
√
3α, C =

√
αy2

4
√
3
, D = − y2

4
√
3
√
α
, E =

y2√
3
√
α
, β =

C2 + AE
3

A2
, M = −

√
A2Θ−AC,

Θ =
√

β cosh

[
1

3
cosh−1

(
C3 +AD2 −ACE

β3/2

)]
,

N = −AD
M

, Y± = −M2 −A
(
3C ± N

)
. (18)
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Figure 1: Variation of radial potential plot of a charged particle for the various values of L taken at the values of
q = .30, α = 0.11, y = 2× 102, m = 0.2, Q = 6.

Here, the two horizons: r+, which represents the outer event horizon and r− < r+, which represents the inner
event horizon of the black hole are obtained if Y+ > 0 and the cosmological horizon rc is obtained if Y− > 0. A
naked singularity may yield if Y+ < 0 and an extremal black hole if Y+ = 0. The possible locations of horizons
are shown in figure 2.

5 Stable and periodic orbits inside the black hole
The circular orbit in the effective potentials V (r) in the r− direction is determined at some radius r, where the
net force is zero by the conditions:

V (r) = 0,
dV (r)

dr
≡ V ′(r) = 0. (19)

For small perturbation of the test particle from the stable orbit, the particle tends to return to the equilibrium
position rather than moving further away or collapsing inward, which is understood by looking at the second
derivative of the potential. For the orbit to be stable, any small perturbation (a slight displacement in radius) results
in a restoring force that pulls the object back to the equilibrium orbit, which is given by the second derivative of
the potential. If the second derivative is negative, this means that the potential is concave down, and the force will
act in a way that restores the object to the equilibrium position after a small perturbation. This corresponds to a
stable orbit. Thus, the stability condition for the circular orbits is given by

d2V (r)

dr2
≡ V ′′(r) > 0, (20)

which ensures that the equilibrium is a local minimum of the potential, leading to a restoring force that stabilizes
the orbit. The circular orbits happen completely in the black hole equatorial plane when Q = 0 at θ = π

2 (see in
[11]).

5.1 Circular orbits of a test charged massive particle inside the static and stationary
charged de sitter black hole

Equatorial circular orbits with some radius r are given by the stability conditions of combined equations (19).
Solving them for the energy, E and angular momentum, L2 of test particles in the static and stationary charged de
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Figure 2: Schematic plot showing the event horizons of the black hole. The upper curve-I represents a naked
singularity, the intermediate curve-II represents an extremal black hole and the lower curve-III represents a black
hole with two event horizons.

Sitter spacetime, we obtain two pairs of solutions for E and L as

L2
± =

∆−
√
q2r4 (12αr4 + y2 (3αr2 − 2r + 2))

2
(m2 (6αr2 − 6r + 8) + q2)

y2 (3αr2 − 3r + 4)
2 , (21)

where ∆ = m2r2
(
3αr2 − 3r + 4

) (
12αr4 + (r − 2)y2

)
+ 12αq2r6 + 3αq2r4y2 − 2q2r3y2 + 2q2r2y2.

E± =
q
(
12αr4 + y2

(
−3αr2 + 4r − 6

))
±
(
12αr4 + y2

(
3αr2 − 2r + 2

))√
m2 (6αr2 − 6r + 8) + q2

2
√
3
√
αry2 (3αr2 − 3r + 4)

.

The real conditions are satisfied if and only if (3αr2−3r+4) > 0. The plots for various values of the cosmological
constants and rotating parameters are shown in figures 3, 4. The stability condition d2V (r)

dr2 > 0 for circular orbits
inside the outer horizon 0 < r < r+ is satisfied for the pair of solution (E+, L+) and (E−, L−) for all α < 3/16.
The typical plot showing the stable circular orbit inside the outer event horizon of the static and stationary charged
black hole for the asymptotically flat solution is shown in figure 5.

The proper period of the circular orbit at some value of r is given by

Tλ =
2πr2

L±
, (22)

and the coordinate period is given by

Tt =
2πr2

L±

(E± − q/
√
α3r)

g(r)
. (23)

5.2 Circular orbits of a test neutral massive particle inside the stationary and static
charged black hole

Inside the outer event horizon of the static and stationary charged black hole, stable and periodic circular orbits
exist for neutral massive particles. We find two pair of solutions for E and L with some radius r as

L±(r) = ±mr

y

√
ry2 − 2y2 + 12αr4

4− 3r + 3r2α
, (24)
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Figure 3: The plot shows the variation of E+ with the radial distance from the black hole at different values of α,
at y = 0.977, q = 0.009.

Figure 4: Variation of E+ with the radial distance from the black hole at different values of α, at y = 0.125, q =
0.009.
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Figure 5: Schematic plot showing the stable circular orbits for test charged massive particle

Figure 6: Schematic plot showing the stable circular orbits for neutral massive particle inside the inner event
horizons

E±(r) =
±m

ry2
√
α6

12r4α+ 2y2 − 2y2r + 3y2r2α√
4− 3r + 3r2α

. (25)

The stability condition d2V (r)
dr2 > 0 for circular orbits inside the inner horizon 0 < r < r+ is satisfied for the pair

of solution (E+, L+) and (E−, L−) for all m = 1, with the condition that α > 3r−4
3r2 .The typical plot showing the

stable orbit inside the static and stationary charged black hole is depicted in figure (6).

5.3 Spherical orbits of a neutral particle inside the static and stationary charged black
hole

Using the equation (19) we obtain two pairs of solutions for E and azimuthal impact parameter b = L
E of a test

massive charged particle:

E± = ± m

ry2
√
6α

(12r4α+ 2y2 − 2y2r + 3r2y2α)√
4− 3r + 3r2α

, (26)

b± = ±ry
√
6α

m

√
m2r2(ry2 + 12r4α− 2y2)−Qy2(4− 3r + 3r4α)

(12r4α+ 2y2 − 2y2r + 3r2y2α)
.

It is verified that for r ̸= 0, y ̸= 0 and α ̸= 0, stable orbits are realized for the pair of solution(E+, b+) with
0 < Q < Qmax, where Qmax is a root of the marginal stability equation of V ′′

r = 0 with the condition that

α >
2(ry2−y2)
3r2(4r2+y2) .

88 Published by the Physics Academy of the North East



PANE Journal of Physics P. J. Phys. 01 (01), 082 (2025)

6 Discussion
In this work, we have obtained the geodesic equations that describe the motion of a test particle in a static and
stationary charged anti-de Sitter black hole in f(R) gravity, specifically to examine how a free particle moves
under the influence of spacetime curvature by means of the Hamiltonian-Jacobi equation of motion. The particle’s
motion is influenced by both the gravitational and electromagnetic fields of the black hole, with the presence of
f(R) gravity altering the overall curvature and geometry of the spacetime. The AdS background adds constraints
on the particle’s motion due to the nature of the spacetime’s boundary conditions. A circular orbit of a test charged
massive particle around the static and stationary charged de Sitter black hole is obtained for all conditions that
α < 3/16 and (3αr2 − 3r + 4) > 0. A spherically stable orbit in the internal space-time domain 0 < r < r−,
where r− is the black hole’s inner horizon is, are found with the condition that for r ̸= 0, y ̸= 0, α ̸= 0, and

α >
2(ry2−y2)
3r2(4r2+y2) . Lastly, it is found that the circular orbit, as a relativistic limit of the test particle’s spherical orbit,

exists in the stable and bound orbits in the black hole in the framework of the anti-de Sitter spacetime.
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